CHEMENG 31N:

When Chemistry Meets Engineering

Preference to freshmen. Chemistry and engineering are subjects that are ubiquitous around us. But what happens when the two meet? Students will explore this question by diving into experimental problems that scientists and engineers have to face on a daily basis.

Read More

Many processes that are taken for granted have been developed by understanding science at a very fundamental level and then applying it to large and important industrial processes. In this seminar, students will explore some of the basic concepts that are important to address chemical engineering problems through experimental work. Students will build materials for energy and environmental applications, understand how to separate mixtures into pure compounds, produce fuels, and will learn to look at the chemical properties of molecules that are part of daily life with a different eye.

CHEMENG 130A:

Microkinetics – Molecular Principles of Chemical Kinetics

This course will cover the basis of chemical kinetics that are used to design chemical processes and reactor design.

Read More

Topics include: origin of rate expression in chemical reactions; experimental generation and analysis of kinetic data; relationship between kinetic and thermodynamic quantities; concepts of elementary steps and reaction orders; reactions in parallel and in sequence; branched reactions; collision theory and introduction to transition state theory; heterogeneous catalysis and surface reactions; enzymatic catalysis; applications of kinetics.

CHEMENG 443:

Principles and practice of heterogeneous catalysis

This course will cover the principles behind preparing and using heterogeneous catalysts in industrial and research settings.

Read More

Topics include: Principles and practical aspects of heterogeneous catalysis. Preparation of catalytic solids. Techniques for the structural characterization of catalysts, including in-situ and operando. Best practices in both structural and catalytic characterization. Kinetic experiments for the characterization of catalytic activity of materials and the determination of active sites. Examples of industrial catalytic processes utilizing heterogeneous catalysts. Perspectives on the role of heterogeneous catalysis in energy and environmental challenges.